
Physics	124:	Lecture	5

Binary,	Hexadecimal,	and	Logic

adapted	from	T.	Murphy’s	lectures

Binary,	Hexadecimal	Numbers
• Computers	store	information	in	binary

– 1	or	0,	corresponding	to	VCC and	0	volts,	typically
– the	CC	subscript	originates	from	“collector”	of	transistor

• Become	familiar	with	binary	counting	sequence

2Phys	124:	Lecture	8

binary decimal hexadecimal

0000	0000 0 0x00

0000 0001 1 0x01

0000	0010 2 0x02

0000	0011 2+1	=	3 0x03

0000	0100 4 0x04

0000	0101 4+1 =	5 0x05

etc.

1111 1100 128+64+32+16+8+4 =	252 0xfc

1111	1101 128+64+32+16+8+4+1	=	253 0xfd

1111	1110 128+64+32+16+8+4+2	=	254 0xfe

1111	1111 128+64+32+16+8+4+2+1	=	255 0xff

Binary	to	Hex:	easy!
• Note	separation	of	previous	8-bit	(one-byte)	
numbers	into	two	4-bit	pieces	(nibbles)
– makes	expression	in	hex	(base-16;	4-bits)	natural

Phys	124:	Lecture	8 3

binary hexadecimal decimal

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 A	(lower	case	fine) 10

1011 B	 11

1100 C 12

1101 D 13

1110 E 14

1111 F 15

Phys 124: Lecture 5 4

Hexadecimal,	 continued

• Once	it	is	easy	for	you	to	recognize	four	bits	at	a	
time,	8	bits	is	trivial:
– 01100001	is	0x61
– 10011111	is	0x9f

• Can	be	handy	because	the	ASCII	code	is	built	around	
hex:
– ‘A’	is	0x41,	‘B’	is	0x42,	…,	‘Z’	is	0x5a
– ‘a’	is	0x61,	‘b’	is	0x62,	…,	‘z’	is	0x7a
– ‘^A’	(control-A)	is	0x01,	‘^B’	is	0x02,	‘^Z’	is	0x1a
– ‘0’	is	0x30,	‘9’	is	0x39

0 1 2 3 4 5 6 7

0 NUL ^@ null	 (\0) DLE ^P SP space 0 @ P ` p

1 SOH ^A start	of	hdr DC1 ^Q ! 1 A Q a q

2 STX ^B start	text DC2 ^R “ 2 B R b r

3 ETX ^C end	text DC3 ^S # 3 C S c s

4 EOT ^D end	trans DC4 ^T $ 4 D T d t

5 ENQ ^E NAK ^U % 5 E U e u

6 ACK ^F acknowledge SYN ^V & 6 F V f v

7 BEL ^G bell ETB ^W ‘ 7 G W g w

8 BS ^H backspace CAN ^X (8 H X h x

9 HT ^I horiz.	tab	(\t) EM ^Y) 9 I Y i y

A LF ^J linefeed	 (\r) SUB ^Z * : J Z j z

B VT ^K vertical	tab ESC escape + ; K [k {

C FF ^L form	feed FS , < L \ l |

D CR ^M carriage ret	(\n) GS - = M] m }

E SO ^N RS . > N ^ n ~

F SI ^O US / ? O _ o DEL
Phys	124:	Lecture	8 5

first	hex	digit
se
co
nd

	h
ex
	d
ig
it

ASCII	Table	 in	Hex

ASCII	in	Hex

• Note	the	patterns	and	conveniences	in	the	ASCII	
table
– 0	thru	9	is	hex	0x30	to	0x39	(just	add	0x30)
– A-Z	parallels	a-z;	just	add	0x20

• starts	at	0x41	and	0x61,	so	H	is	8th letter,	 is	0x48,	etc.

– the	first	32	characters	are	control	characters,	often	
represented	as	Ctrl-C,	denoted	̂ C,	for	instance

• associated	control	characters	mirror	0x40	to	0x5F
• put	common	control	characters	 in	red;	useful	 to	know	in	some	
primitive	environments

Phys	124:	Lecture	8 6

Phys	124:	Lecture	5 7

Parenthesis:	Thru-hole	vs	SMT
(Surface	Mounted	Technology)

Thru-hole

SMT

Phys	124:	Lecture	5 8

Intro	to	soldering

• https://learn.sparkfun.com/tutorials/how-to-solder-
through-hole-soldering

Phys	124:	Lecture	5 9

Soldering	equipment	and	supplies

Phys	124:	Lecture	5 10

solder

brass
sponge

Soldering
tips

soldering	 irons

soldering
wand

“Dos	and	Don’ts”

Phys	124:	Lecture	5 11

Phys 124: Lecture 5 12

Logic	Families
• TTL:	transistor-transistor	logic:	BJT	based

– subtypes:	 L(ow	power),	LS(chotky),	F(ast),	A(dvanced)S,	ALS,	or	H(igh-speed),	LVTTL
– output:	 logic	high	has	VOH >	3.3	V;	logic	low	has	VOL <	0.35	V
– input:	 logic	high	has	VIH >	2.0	V;	logic	low	has	VIL <	0.8	V
– dead	zone	between	0.8V	and	2.0	V

• nominal	threshold:	VT =	1.5	V

• CMOS:	complimentary	MOSFET	(Metal-Oxide-Semicond FET)	
– chips	have	HC	or	AHC	designation	 (Advanced	High-speed	 CMOS)
– output:	 logic	high	has	VOH >	4.7	V;	logic	low	has	VOL <	0.2	V
– input:	 logic	high	has	VIH >	3.7	V;	logic	low	has	VIL <	1.3	V
– dead	zone	between	1.3V	and	3.7	V

• nominal	threshold:	VT =	2.5	V
– chips	w/HCT	designation	 are	CMOS	with	TTL-compatible	 thresholds

Phys 124: Lecture 5 13

Logic	Family	Levels
• CMOS	is	closer	to	the	“ideal”	that	

logic	low	is	zero	volts	and	logic	high	is	
5	volts
– and	has	a	bigger	dead	zone

• Example:	A	TTL	device	must:
– interpret	any	input	below	0.8	V	as	

logic	 low
– interpret	any	input	above	2.0	V	as	

logic	high
– put	out	at	least	 3.3	V	for	logic	high
– put	out	less	 than	0.35	V	for	logic	low

• The	differing	 input/output	 thresholds	
lead	to	noise	immunity

Phys	124:	Lecture	5 14

Phys 124: Lecture 5 15

Transistors

• Transistors	are	versatile,	highly	non-linear	
devices

• Two	frequent	modes	of	operation:
– amplifiers/buffers
– switches

• Two	main	flavors:
– npn (more	 common)	or	pnp,	describing	doping	

structure
• Also	many	varieties:	

– bipolar	junction	transistors	(BJTs)	such	as	npn,	pnp
– field	effect	transistors	(FETs):	n-channel	 and	p-

channel
– metal-oxide-semiconductor	 FETs (MOSFETs)

• We’ll	just	hit	the	essentials	of	the	BJT	here
– MOSFET later	in	lecture

B

C

E

B

E

C

npn pnp

Phys 124: Lecture 5 16

BJT	Amplifier	Mode
• Central	idea	is	that	when	in	the	right	regime,	the	BJT	

collector-emitter	current is	proportional	to	the	base	
current:
– namely,	 Ice =	βIb,	where	 the	DC	current	gainβ (or	hfe)	is	~100
– In	this	regime,	 the	base-emitter	 voltage	is	~0.6	V
– below,	 Ib =	(Vin − 0.6)/Rb;	 Ice = βIb =	 β(Vin − 0.6)/Rb
– so	that	Vout =	Vcc − IceRc =	Vcc − β(Vin − 0.6)(Rc/Rb)
– ignoring	DC	biases,	wiggles	on	Vin become	β (Rc/Rb)	bigger	(and	

inverted):	 thus	amplified

out

Rc

Rb
in

Vcc

B

C

E

Phys 124: Lecture 5 17

Switching:	Driving	to	Saturation
• What	would	happen	if	the	base	current	is	so	big that	the	

collector	current	got	so	big that	the	voltage	drop	across	
Rc wants	to	exceed	Vcc?
– we	call	this	saturated:	VCE	=	Vc − Ve cannot	dip	below	~0.2	V
– even	if	Ib is	increased,	 Ic won’t	budge	any	more

• The	example	below	is	a	good	logic	inverter
– if	Vcc =	5	V;	Rc =	1	kΩ;	 Ic(sat)	≈ 5	mA;	need	 Ib >	0.05	mA
– so	Rb <	20	kΩ would	put	us	safely	 into	saturation	if	Vin =	5V
– now	5	V	in	→ ~0.2	V	out;	<	0.6	V	in	→ 5	V	out

out

Rc

Rb
in

Vcc

from	Lecture	3:	Transistor	as	a	switch

Phys	124:	Lecture	3 18

Operate	in	either	cut-off	 (OFF)	or	saturation	(ON)	regions

Example:
Bipolar	 junction	transistor	(BJT)

http://www.electronics-tutorials.ws/transistor/tran_4.html

Phys	124:	Lecture	3 19

from	Lecture	3:	Transistor	as	a	switch

OFF

ON

http://www.electronics-tutorials.ws/transistor/tran_4.html

Phys 124: Lecture 5 20

Transistor	Buffer

• In	the	hookup	above	(emitter	follower,	or	common	collector),	
Vout =	Vin − 0.6
– sounds	useless,	 right?
– there	is	no	voltage	“gain,”	but	there	 is current	gain
– Imagine	we	wiggle	Vin by	ΔV:	Vout wiggles	 by	the	same	ΔV
– so	the	transistor	current	changes	by	ΔIe =	ΔV/R
– but	the	base	current	changes	1/β times	this	(much	less)
– so	the	“wiggler”	 thinks the	load	is	ΔV/ΔIb =	β·ΔV/ΔIe =	βR
– the	load	therefore	is	less	formidable

• The	“buffer”	is	a	way	to	drive	a	load	without	the	driver	feeling	
the	pain	(as	much):	it’s	impedance	isolation

out

R

in

Vcc

Phys 124: Lecture 5 21

Field-Effect	Transistors
• The	“standard”	npn and	pnp transistors	use	base-
current to	control	the	transistor	current

• FETs use	a	field	(voltage)	to	control	current
• Result	is	no	current	flows into	the	control	“gate”
• FETs are	used	almost	exclusively	as	switches

– pop	a	few	volts	on	the	control	gate,	and	the	effective	
resistance	is	nearly	zero

2N7000	FET

Phys 124: Lecture 5 22

FET	Generalities
• Every	FET	has	at	least	three	

connections:
– source	(S)

• akin	to	emitter	(E)	on	BJT
– drain	(D)

• akin	to	collector	(C)	on	BJT
– gate	(G)

• akin	to	base	(B)	on	BJT

• Some	have	a	body	connection	 too
– though	often	tied	to	source

FET

BJT

note	pinout
correspondence

Phys 124: Lecture 5 23

FET	Types
• Two	flavors:	n and	p
• Two	types:	JFET,	MOSFET
• MOSFETs more	common
• JFETs conduct	“by	default”

– when	Vgate =	Vsource

• MOSFETs are	“open”	by	default
– must	turn	on	deliberately

• JFETs have	a	p-n junction	at	the	
gate,	so	must	not	forward	bias	
more	than	0.6	V

• MOSFETs have	total	isolation:	
do	what	you	want

0 2 4−2−4

log	current

Vgate − Vsource

p-channel	MOSFET n-channel	MOSFET

n-channel
JFET

p-channel
JFET

Phys 124: Lecture 5 24

MOSFET	Switches	

• MOSFETs,	as	applied	to	logic	designs,	act	as	voltage-
controlled	switches
– n-channel MOSFET	is	closed	 (conducts)	when	positive	voltage	

(+5	V)	is	applied,	open	when	zero	voltage
– p-channel MOSFET	is	open	when	positive	voltage	(+5	V)	is	

applied,	 closed	(conducts)	 when	zero	voltage
• (MOSFET	means	metal-oxide	 semiconductor	 field	effect	transistor)

source

drain

gate

source

gate

drain
5	V 5	V

0	V0	V

5	V0	V

+	voltage +	voltage

0	V 5	V

<	5	V <	5	V

n-channel	MOSFET p-channel	MOSFET

“body”	connection	often
tied	to	“source”

Phys 124: Lecture 5 25

Data	manipulation

• All	data	manipulation	is	based	on	logic
• Logic	follows	well	defined	rules,	producing	
predictable	digital	output	from	certain	input

• Examples:

A B C
0 0 0
0 1 0
1 0 0
1 1 1

AND

A B C
0 0 0
0 1 1
1 0 1
1 1 1

OR

A B C
0 0 0
0 1 1
1 0 1
1 1 0

XOR

A B C
0 0 1
0 1 1
1 0 1
1 1 0

NAND

A B C
0 0 1
0 1 0
1 0 0
1 1 0

NOR

A
B

A
B

A
B

A
B

A
B C

bubbles	mean	inverted	(e.g.,	NOT	AND	→ NAND)

A

A C
0 1
1 0

NOT

Phys 124: Lecture 5 26

An	inverter	(NOT)	from	MOSFETS:
5	V

0	V

input output

5	V

5	V

0	V

0	V

5	V

5	V0	V

0	V

• 0	V	input	turns	OFF lower	(n-channel)	FET,	turns	ON
upper	(p-channel),	so	output	is	connected	to	+5	V

• 5	V	input	turns	ON lower	(n-channel)	FET,	turns	OFF
upper	(p-channel),	so	output	is	connected	to	0	V
– Net	effect	is	logic	inversion:	 0→ 5;	5	→ 0

• Complementary	MOSFET	pairs	→ CMOS

A

A C
0 1
1 0

NOT

n-channel	
MOSFET

p-channel
MOSFET

Phys 124: Lecture 5 27

A	NAND	gate	from	scratch:

5	V

0	V

IN	A

IN	B

OUT	C

• Both	inputs	at	zero:
– lower	two	FETs	OFF,	upper	two	ON
– result	 is	output	HI

• Both	inputs	at	5	V:
– lower	two	FETs	ON,	upper	two	OFF
– result	 is	output	LOW

• IN	A	at	5V,	IN	B	at	0	V:
– upper	left	OFF,	lowest	ON
– upper	right	ON,	middle	OFF
– result	 is	output	HI

• IN	A	at	0	V,	IN	B	at	5	V:
– opposite	 of	previous	entry
– result	 is	output	HI

A B C
0 0 1
0 1 1
1 0 1
1 1 0

NAND

A
B

0	V C

p p

n

n

Phys 124: Lecture 5 28

A	NAND	gate	from	scratch:

5	V

0	V

IN	A

IN	B

OUT	C

• Both	inputs	at	zero:
– lower	two	FETs	OFF,	upper	two	ON
– result	 is	output	HI

• Both	inputs	at	5	V:
– lower	two	FETs	ON,	upper	two	OFF
– result	 is	output	LOW

• IN	A	at	5V,	IN	B	at	0	V:
– upper	left	OFF,	lowest	ON
– upper	right	ON,	middle	OFF
– result	 is	output	HI

• IN	A	at	0	V,	IN	B	at	5	V:
– opposite	 of	previous	entry
– result	 is	output	HI

A B C
0 0 1
0 1 1
1 0 1
1 1 0

NAND

A
B

0	V C

p p

n

n

5V

0	V

OFF

OFF

ON

ON

Phys 124: Lecture 5 29

A	NOR	gate	from	scratch:

5	V

0	V

IN	A

IN	B

OUT	C

• Both	inputs	at	zero:
– lower	two	FETs	OFF,	upper	two	ON
– result	 is	output	HI

• Both	inputs	at	5	V:
– lower	two	FETs	ON,	upper	two	OFF
– result	 is	output	LOW

• IN	A	at	5V,	IN	B	at	0	V:
– lower	left	OFF,	lower	right	ON
– upper	ON,	middle	OFF
– result	 is	output	LOW

• IN	A	at	0	V,	IN	B	at	5	V:
– opposite	 of	previous	entry
– result	 is	output	LOW

A B C
0 0 1
0 1 0
1 0 0
1 1 0

NOR

5	V

A
B

C

just	a	NAND	flipped
upside-down…

Phys 124: Lecture 5 30

All	Logic	from	NANDs	Alone

A B C
0 0 1
0 1 1
1 0 1
1 1 0

NAND

A
B

A C
0 1
1 0

NOT

A B C
0 0 0
0 1 0
1 0 0
1 1 1

AND

A B C
0 0 0
0 1 1
1 0 1
1 1 1

OR

A B C
0 0 1
0 1 0
1 0 0
1 1 0

NOR

invert output (invert NAND)

invert both inputs

invert inputs and output (invert OR)

Phys 124: Lecture 5 31

One	last	type:	XOR

• XOR	=	(A	NAND	B)	AND	(A	OR	B)
• And	this	you	already	know	you	can	make	from	
composite	NAND	gates	(though	requiring	6	total)

• Then,	obviously,	XNOR	is	the	inverse	of	XOR
– so	just	stick	an	inverter	on	the	output	of	XOR

A
B

C

Phys 124: Lecture 5 32

Rule	the	World

• Now	you	know	how	to	build	ALL logic	gates	out	of				
n-channel and	p-channel MOSFETs
– because	you	can	build	a	NAND	from	4	MOSFETs
– and	all	gates	from	NANDs

• That	means	you	can	build	computers

• So	now	you	can	rule	the	world!

Phys 124: Lecture 5 33

Arithmetic	Example

• Let’s	add	two	binary	numbers:
00101110		=	 0x2e	=	46

+	01001101		=	 0x4d	=	77
01111011		=	 0x7b	=	123

• How	did	we	do	this?	We	have	rules:
0	+	0	=	0;		0	+	1	=	1	+	0	=	1;	1	+	1	=	10	(2):	(0,	carry	1);
1	+	1	+	(carried	1)	=	11	(3):	(1,	carry	1)

• Rules	can	be	represented	by	gates
– If	two	input	digits	are	A	&	B,	output	digit	looks	like	XOR	

operation	 (but	need	 to	account	for	carry	operation)

A B C
0 0 0
0 1 1
1 0 1
1 1 0

XOR

A
B

Phys 124: Lecture 5 34

Can	make	rule	table:
Cin A B
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

D Cout
0 0
1 0
1 0
0 1
1 0
0 1
0 1
1 1

• Digits	A	&	B	are	added,	possibly	accompanied	by	carry	
instruction	from	previous	stage

• Output	is	new	digit,	D,	along	with	carry	value
– D	looks	like	XOR	of	A	&	B	when	Cin is	0
– D	looks	like	XNOR	of	A	&	B	when	Cin is	1
– Cout is	1	if	two	or	more	of	A,	B,	Cin are	1

Phys 124: Lecture 5 35

Binary	Arithmetic	in	Gates

A
B
Cin

D

Cout
F

E

H

G

A B Cin E F H G D Cout
0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 1 0
1 0 0 1 1 0 0 1 0
1 1 0 0 1 0 1 0 1
0 0 1 0 0 0 0 1 0
0 1 1 1 1 1 0 0 1
1 0 1 1 1 1 0 0 1
1 1 1 0 1 1 1 1 1

Input Intermediate Output
Each digit requires 6 gates

Each gate has ~6 transistors

~36 transistors per digit

+
A

B

Cin

D

Cout

“Integrated” Chip

Phys 124: Lecture 5 36

8-bit	binary	arithmetic	(cascaded)

0

1

0

0

1

1

0

1

0

0

1

0

1

1

1

0

0

1

1

1

1

0

1

1

0

0

0

1

1

0

0

00101110 = 46
+ 01001101 = 77

01111011 = 123

1 1+

+

+

+

+

+

+

+
0

MSB

LSB = Least Significant Bit

Carry-out tied to carry-in of next digit.

“Magically” adds two binary numbers

Up to ~300 transistors for this basic
function. Also need –, ×, /, & lots more.

Integrated one-digit binary arithmetic unit (prev. slide)

Phys 124: Lecture 5 37

Computer	technology	built	up	from	pieces

• The	foregoing	example	illustrates	the	way	in	which	
computer	technology	is	built
– start	with	little	pieces	(transistors	acting	as	switches)
– combine pieces	 into	functional	blocks	(gates)
– combine these	blocks	into	higher-level	 function	(e.g.,	addition)
– combine these	new	blocks	into	cascade	(e.g.,	8-bit	addition)
– blocks	get	increasingly	 complex,	more	capable

• Nobody	on	earth	understands every	nit	of	modern	CPU
– Grab	previously	 developed	 blocks	and	run
– Let	a	computer	design	the	gate	arrangements	 (eyes	 closed!)

Phys 124: Lecture 5 38

Bitwise logic	operators	in	C
• Logical	operators	applied	to	integers	or	characters	get	applied	bit-wise

– operators	include	&	(and),	|	(or),	^	(xor),	~	(not)
– don’t	confuse	with	conditional	&&	(AND),	||	(OR),	etc.	(doubled-up)

• Examples:
– 21 & 7→ 5:	00010101	&	00000111	→ 00000101
– 21 & 0xff → 21:	00010101	&	11111111	→ 00010101
– 21 & 0→ 0:	00010101	&	00000000	→ 00000000
– 21 | 7→ 23:	00010101	|	00000111	→ 00010111
– 21 ^ 7→ 18:	00010101	̂ 	00000111	→ 00010010
– ~21→ 234:	~00010101	→ 11101010

• Masking
– 234 &= 0x1f → 11101010	&	00011111	→ 00001010 =	0x0a

• Bit	shifting	with	>> or	<< operators
– 01101011 >> 2→ 00011010 (effectively	divide	by	4)
– 01101011 << 1→ 11010110 (effectively	multiply	 by	2)

